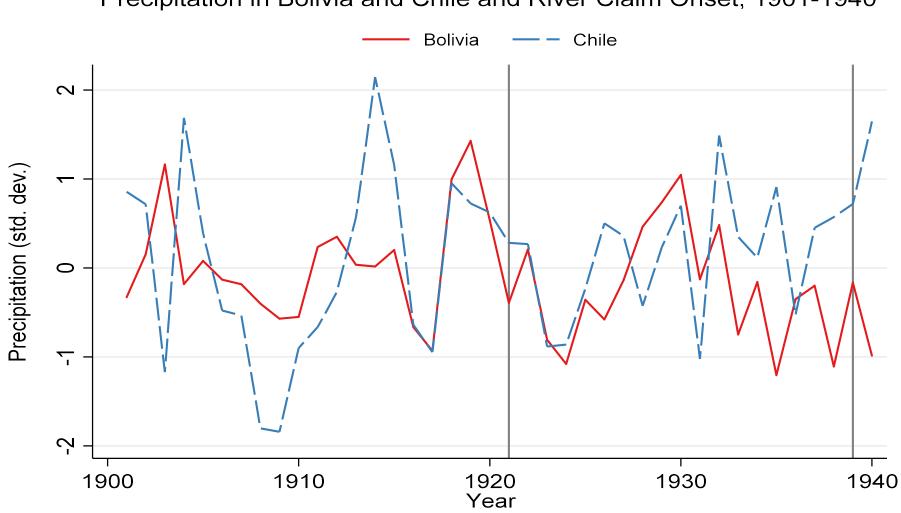
Climate Bones of Contention

Cody J. Schmidt, Bomi Lee, & Sara McLaughlin Mitchell

Department of Political Science University of Iowa

Introduction

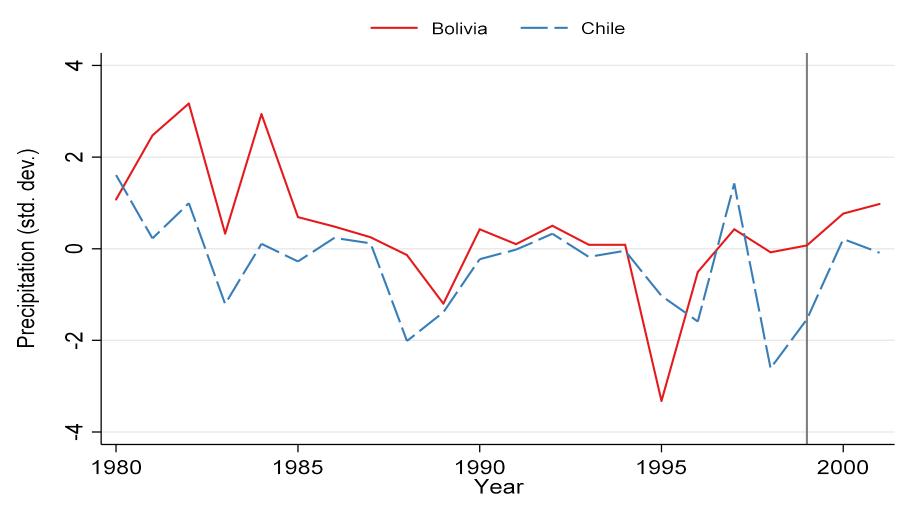
- Climate Change → Security Risks
 - Changes in "mean conditions" (Barnett & Adger 2007: 640)
 - Increased global *temperatures*
 - Changes in annual *precipitation*
 - Rising sea-levels
 - Changes in intensity/frequency of natural disasters
 - floods, droughts, storms, fires, heatwaves, etc.
- Literature
 - Primarily focuses on civil conflict; empirical findings are contested
 - A general lack of research on how climate change affects *interstate* conflict
 - Failure to examine how climate change influences *diplomatic* conflict
 - A lack of understanding of the causal mechanisms that connect climate change to contested diplomatic issues
- Research Question
 - Is climate change affecting the onset and militarization of diplomatic conflicts over territory, cross-border rivers, and maritime areas?
 - If so, is there evidence of issue heterogeneity?


Literature Review

- Climate Change & Intrastate Conflict
 - Disparate findings connecting temperatures, precipitation, and armed conflict
 - ↑ Annual temperatures in sub-Saharan Africa ↑ civil conflict (Burke et al 2009)
 - Changes in temperatures/precipitation have no effect on armed conflict (Buhaug 2010)
 - Extreme deviations in rainfall increase civil conflict, but stronger for wetter years (Hendrix & Salehyan)
- Climate Change & Interstate Conflict
 - Lateral pressure ↑ interstate resource conflicts (Choucri and North 1975)
 - Climate change influences militarized interstate disputes (MIDs)
 - Population density and soil degradation increase MID risks, but fish, water scarcity, and resource vulnerability have no effect (Stalley 2003)
 - Higher variability and lower mean levels of precipitation increase MID risks (Devlin & Hendrix 2014)
 - Global climate change is associated with peace, not conflict (Gartzke 2012)
- River literature also has conflicting findings (scarcity/conflict)

Theoretical Approach

- We focus on two broad effects of climate change on interstate conflict (issue claim onset & MID onset)
 - <u>Scarcity</u>: increased competition for resources affected by climate change
 - <u>Uncertainty</u>: climate change increases uncertainty about future resources
- Scarcity
 - Climate change can reduce the strategic and economic value of territory, maritime areas, and cross-border rivers
 - Examples: desertification, displacement from droughts/flooding, changes in agricultural productivity
 - This may motivate states to contest the ownership of areas that are not experiencing this reduction in strategic value (lateral pressure)
 - Challengers influenced more by climate changes (e.g. downstream states experiencing increased water scarcity)
 - - Example: Bolivia's declining precipitation levels prior to challenging Chile's diversion of river waters in the Mauri & Lauca rivers



Precipitation in Bolivia and Chile and River Claim Onset, 1901-1940

Theoretical Approach

- Uncertainty
 - Climate change increases uncertainty about future resource stocks, especially when climate changes are highly volatile
 - Diplomatic conflict more likely when states experience greater deviations in mean temperatures/precipitation (curvilinear effect)
 - Examples
 - Bolivia experiencing greater variance in its precipitation prior to initiating a river claim against Chile in 1939 (Lauca River)
 - Chile experiencing greater variance in precipitation prior to initiating a river claim against Bolivia in 1999 (Silala River)

Precipitation in Bolivia and Chile and River Claim Onset, 1981-2001

Variation Across Issues

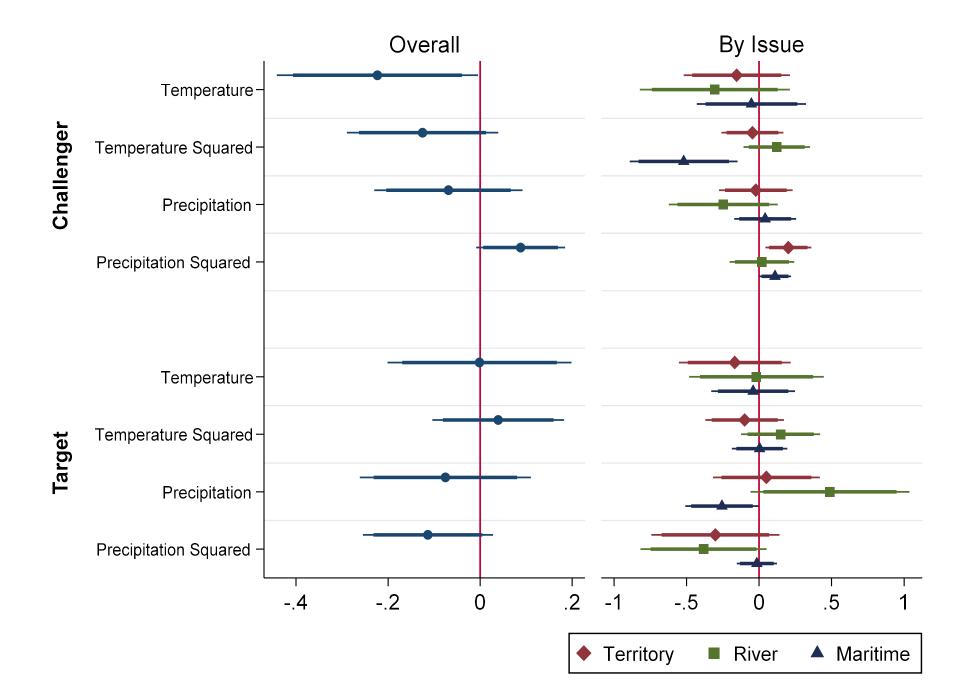
- <u>Territory</u>: climate change can influence the value of territory (e.g. desertification, flooding/displacement of people) relative to non-affected territories, which can increase diplomatic claims. Border location can also be affected by climate change (e.g. rivers changing course), which could create new territorial claims.
- <u>Rivers</u>: water scarcity increases risks of militarization, although there are few water wars. River literature suggests a curvilinear relationship between water scarcity and cooperation (Dinar), which suggests climate induced conflict most likely at very high or low precipitation values.
- <u>Maritime</u>: increasing temperatures making areas of the ocean more accessible (e.g. arctic) which could create new claims; climate change can alter existing EEZ/territorial sea boundaries, creating new maritime claims.

Key Independent Variables

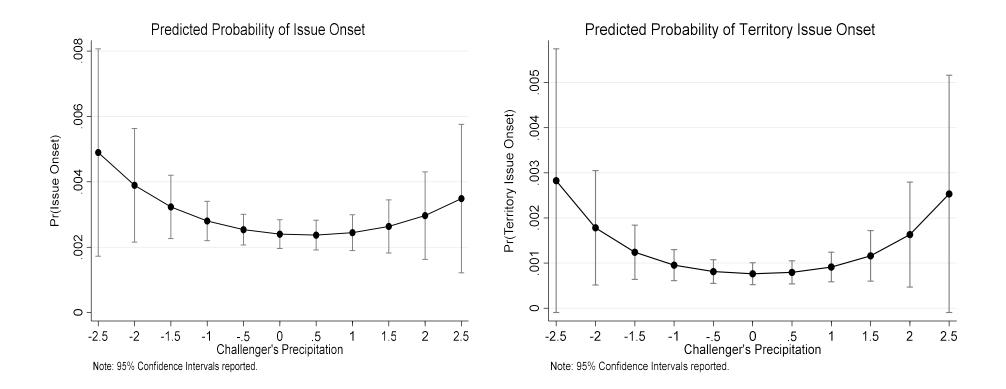
- Climate Variables (Climate Research Unit, University of East Anglia), 1901-2001 (monthly, aggregated)
 - Temperature (degrees Celsius)
 - Precipitation (millimeters)
- Measure
 - Standardized deviations from the long-run mean for that country (Hendrix and Salehyan 2012)
 - $(X_{it} \overline{X}_i)/\sigma_i$, where \overline{X}_i is the panel mean for country i, X_{it} is the current precipitation in time t for country i, and σ_i is the standard deviation for country i.
- We include squared terms to test for curvilinear effects

Research Design

- Unit of analysis: politically relevant dyad years in Americas & Europe (N=68,708)
 - DV #1: Issue claim onset (ICOW dataset)
 - DV #2: Militarization of ICOW claim (N=6,679 claim dyad years)
 - Data are coded by challenger (revisionist) and target (SQ defender) distinction in ICOW
- Controls
 - Issue Salience, Population, Relative Capabilities, Alliance, Major power status, Distance, Diplomatic (or MID) Peace Years
- Model: Logistic Regression with robust SE's

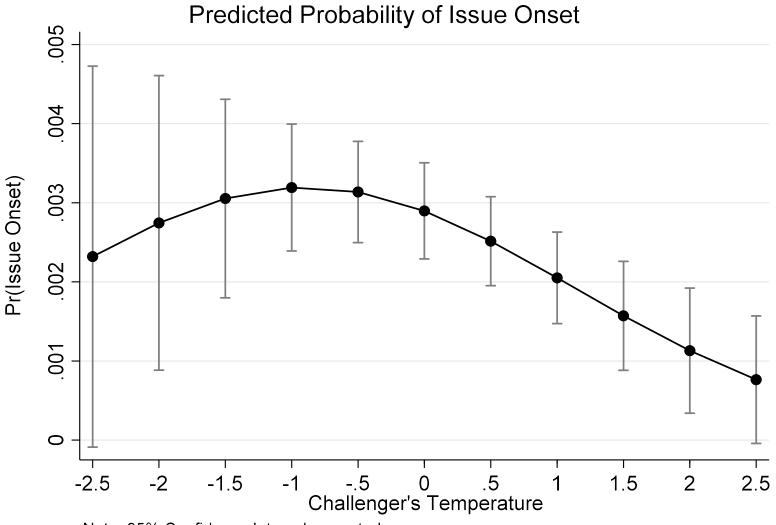

Analyses in Two Stages

- Analysis 1 considers the onset of diplomatic issue claims in PRD.
 - Less than half of all ICOW claims experience any MIDs, thus this analysis captures interstate conflict more generally.
- Analysis 2 focuses on dyads that experience a territorial, river, or maritime claim and codes whether a MID occurs in a given claim dyad year.
 - Captures whether changing climate conditions during a diplomatic conflict alter conflict risks.



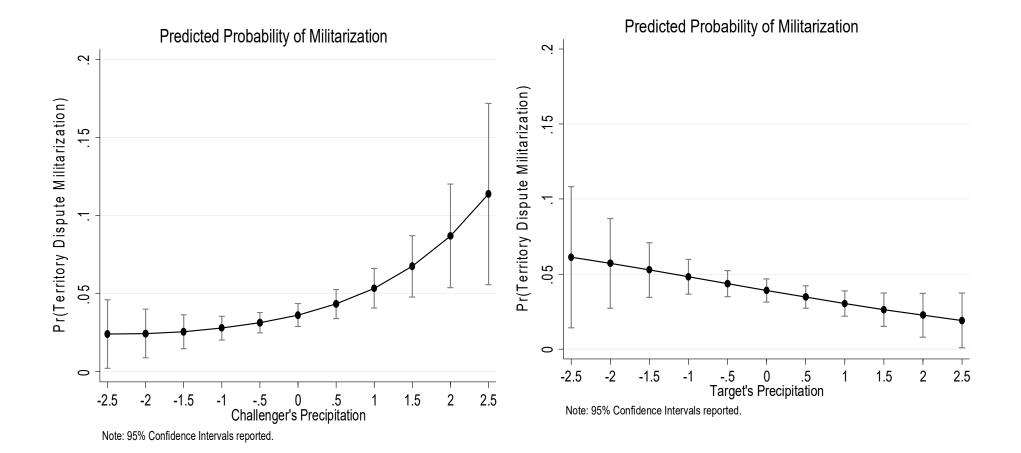
<u>Finding #1</u>: Climate change has a weak effect on issue claim onset (Analysis 1)

	Model 1:	Model 2:	Model 3:	Model 4:
	Territory	River	Maritime	All
Potential Challenger	·			
Precipitation	-0.022	-0.247	0.042	-0.069
-	(0.130)	(0.192)	(0.109)	(0.082)
Precipitation Squared	0.202**	0.020	0.110*	0.088*
	(0.081)	(0.114)	(0.056)	(0.056) (0.049)
Temperature	-0.154	-0.305	-0.053	-0.223**
-	(0.187)	(0.264)	(0.192)	(0.112)
Temperature Squared	-0.046	0.122	-0.520***	-0.125
	(0.109)	(0.117)	(0.190)	(0.084)
Potential Target				
Precipitation	0.050	0.489*	-0.256**	-0.075
-	(0.188)	(0.279)	(0.129)	(0.095)
Precipitation Squared	-0.301	-0.383*	-0.015	-0.113 (0.072)
	(0.225)	(0.222)	(0.071)	
Temperature	-0.167	-0.018	-0.041	-0.001
-	(0.197)	(0.237)	(0.148)	(0.102)
Temperature Squared	-0.099	0.149	0.004	0.039
	(0.139)	(0.139)	(0.098)	(0.073)



<u>Finding #2</u>: Challengers initiate more issue claims (esp. territory) as precip. deviation \uparrow

<u>Finding #3</u>: Contrary to expectations, ↑ temperature deviations reduce issue claim risks



Note: 95% Confidence Intervals reported.

<u>Finding #4</u>: MIDs \uparrow when challengers experience \uparrow precip. deviations (esp. for territory) (Analysis 2)

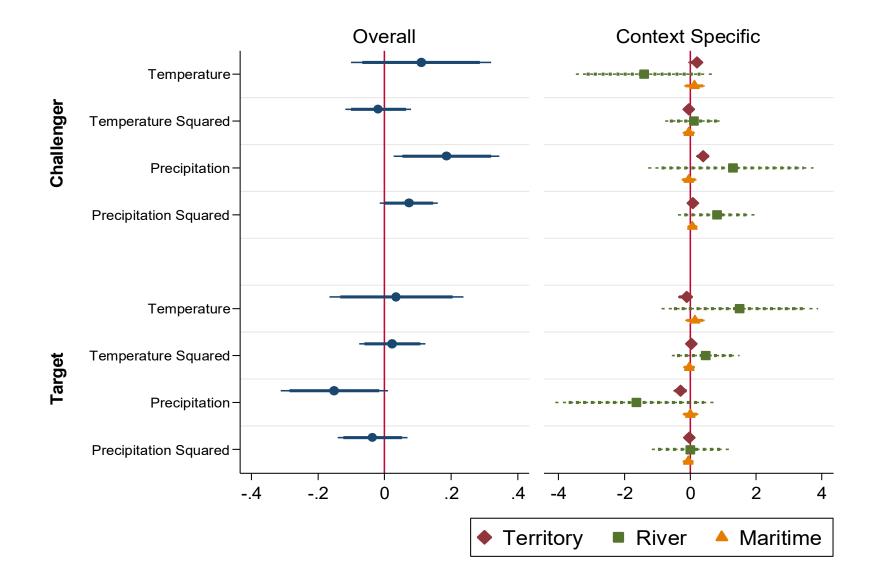
	Model 1:	Model 2: River	Model 3:	Model 4: All
	Territory		Maritime	
Potential Challenger				
Precipitation	0.361***	1.293	-0.056	0.173**
	(0.111)	(1.310)	(0.118)	(0.081)
Precipitation Squared	0.073	0.821	0.067	0.073*
	(0.059)	(0.611)	(0.078)	(0.044)
Temperature	0.204	-1.400	0.129	0.098
	(0.133)	(1.062)	(0.159)	(0.104)
Temperature Squared	-0.041	0.116	-0.048	-0.026
	(0.081)	(0.451)	(0.095)	(0.049)
Potential Target				
Precipitation	-0.260**	-1.635	0.009	-0.146*
	(0.115)	(1.254)	(0.124)	(0.082)
Precipitation Squared	-0.021	0.006	-0.052	-0.031
	(0.072)	(0.595)	(0.089)	(0.053)
Temperature	-0.112	1.505	0.139	0.038
	(0.135)	(1.213)	(0.149)	(0.099)
Temperature Squared	0.035	0.468	-0.029	0.026
	(0.084)	(0.525)	(0.093)	(0.050)

<u>Finding #5</u>: Target states are more likely to militarize claims in times of drought (no curvilinear effect).

Conclusions

- Much like the climate change and civil conflict literature, our findings testing the relationship between climate change and interstate conflict are mixed.
 - Relationship depends on *what* is changing about the climate (temperature vs precipitation)
 - Effects depend on *what* issue is at stake (territorial claims most influenced by climate variables)
 - Effects are different for revisionist and target states; uncertainty matters more for potential revisionists.
- Future Work
 - Look at causal mechanisms in more detail & consider how scarcity & uncertainty interact
 - Capture longer trends in global warming, territorial integrity norms, etc.

Thank You!


Cody J. Schmidt (cody-j-schmidt@uiowa.edu)

Bomi Lee (bomi-lee-1@uiowa.edu)

Sara McLaughlin Mitchell (sara-mitchell@uiowa.edu)

Findings: Issue Militarization

